3.700 \(\int \frac{(f+g x)^4 (a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^{5/2}} \, dx\)

Optimal. Leaf size=336 \[ \frac{16 (f+g x)^3 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2} (c d f-a e g)}{195 c^2 d^2 (d+e x)^{7/2}}+\frac{32 (f+g x)^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2} (c d f-a e g)^2}{715 c^3 d^3 (d+e x)^{7/2}}+\frac{128 g \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2} (c d f-a e g)^3}{6435 c^4 d^4 e (d+e x)^{5/2}}-\frac{128 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2} (c d f-a e g)^3 \left (2 a e^2 g-c d (9 e f-7 d g)\right )}{45045 c^5 d^5 e (d+e x)^{7/2}}+\frac{2 (f+g x)^4 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2}}{15 c d (d+e x)^{7/2}} \]

[Out]

(-128*(c*d*f - a*e*g)^3*(2*a*e^2*g - c*d*(9*e*f - 7*d*g))*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/(4504
5*c^5*d^5*e*(d + e*x)^(7/2)) + (128*g*(c*d*f - a*e*g)^3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/(6435*c
^4*d^4*e*(d + e*x)^(5/2)) + (32*(c*d*f - a*e*g)^2*(f + g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/(
715*c^3*d^3*(d + e*x)^(7/2)) + (16*(c*d*f - a*e*g)*(f + g*x)^3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/
(195*c^2*d^2*(d + e*x)^(7/2)) + (2*(f + g*x)^4*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/(15*c*d*(d + e*x
)^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.618059, antiderivative size = 336, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 46, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.065, Rules used = {870, 794, 648} \[ \frac{16 (f+g x)^3 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2} (c d f-a e g)}{195 c^2 d^2 (d+e x)^{7/2}}+\frac{32 (f+g x)^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2} (c d f-a e g)^2}{715 c^3 d^3 (d+e x)^{7/2}}+\frac{128 g \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2} (c d f-a e g)^3}{6435 c^4 d^4 e (d+e x)^{5/2}}-\frac{128 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2} (c d f-a e g)^3 \left (2 a e^2 g-c d (9 e f-7 d g)\right )}{45045 c^5 d^5 e (d+e x)^{7/2}}+\frac{2 (f+g x)^4 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2}}{15 c d (d+e x)^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[((f + g*x)^4*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(d + e*x)^(5/2),x]

[Out]

(-128*(c*d*f - a*e*g)^3*(2*a*e^2*g - c*d*(9*e*f - 7*d*g))*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/(4504
5*c^5*d^5*e*(d + e*x)^(7/2)) + (128*g*(c*d*f - a*e*g)^3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/(6435*c
^4*d^4*e*(d + e*x)^(5/2)) + (32*(c*d*f - a*e*g)^2*(f + g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/(
715*c^3*d^3*(d + e*x)^(7/2)) + (16*(c*d*f - a*e*g)*(f + g*x)^3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/
(195*c^2*d^2*(d + e*x)^(7/2)) + (2*(f + g*x)^4*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/(15*c*d*(d + e*x
)^(7/2))

Rule 870

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[(e*(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p + 1))/(c*(m - n - 1)), x] - Dist[(n*(c*e*f + c*d*g
 - b*e*g))/(c*e*(m - n - 1)), Int[(d + e*x)^m*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c,
 d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Integ
erQ[p] && EqQ[m + p, 0] && GtQ[n, 0] && NeQ[m - n - 1, 0] && (IntegerQ[2*p] || IntegerQ[n])

Rule 794

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0] && (NeQ[m, 2] || Eq
Q[d, 0])

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps

\begin{align*} \int \frac{(f+g x)^4 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx &=\frac{2 (f+g x)^4 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{15 c d (d+e x)^{7/2}}+\frac{(8 (c d f-a e g)) \int \frac{(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx}{15 c d}\\ &=\frac{16 (c d f-a e g) (f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{195 c^2 d^2 (d+e x)^{7/2}}+\frac{2 (f+g x)^4 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{15 c d (d+e x)^{7/2}}+\frac{\left (16 (c d f-a e g)^2\right ) \int \frac{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx}{65 c^2 d^2}\\ &=\frac{32 (c d f-a e g)^2 (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{715 c^3 d^3 (d+e x)^{7/2}}+\frac{16 (c d f-a e g) (f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{195 c^2 d^2 (d+e x)^{7/2}}+\frac{2 (f+g x)^4 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{15 c d (d+e x)^{7/2}}+\frac{\left (64 (c d f-a e g)^3\right ) \int \frac{(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx}{715 c^3 d^3}\\ &=\frac{128 g (c d f-a e g)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{6435 c^4 d^4 e (d+e x)^{5/2}}+\frac{32 (c d f-a e g)^2 (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{715 c^3 d^3 (d+e x)^{7/2}}+\frac{16 (c d f-a e g) (f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{195 c^2 d^2 (d+e x)^{7/2}}+\frac{2 (f+g x)^4 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{15 c d (d+e x)^{7/2}}+\frac{\left (64 (c d f-a e g)^3 \left (9 f-\frac{7 d g}{e}-\frac{2 a e g}{c d}\right )\right ) \int \frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx}{6435 c^3 d^3}\\ &=\frac{128 (c d f-a e g)^3 \left (9 f-\frac{7 d g}{e}-\frac{2 a e g}{c d}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{45045 c^4 d^4 (d+e x)^{7/2}}+\frac{128 g (c d f-a e g)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{6435 c^4 d^4 e (d+e x)^{5/2}}+\frac{32 (c d f-a e g)^2 (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{715 c^3 d^3 (d+e x)^{7/2}}+\frac{16 (c d f-a e g) (f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{195 c^2 d^2 (d+e x)^{7/2}}+\frac{2 (f+g x)^4 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{15 c d (d+e x)^{7/2}}\\ \end{align*}

Mathematica [A]  time = 0.22377, size = 205, normalized size = 0.61 \[ \frac{2 (a e+c d x)^3 \sqrt{(d+e x) (a e+c d x)} \left (48 a^2 c^2 d^2 e^2 g^2 \left (65 f^2+70 f g x+21 g^2 x^2\right )-64 a^3 c d e^3 g^3 (15 f+7 g x)+128 a^4 e^4 g^4-8 a c^3 d^3 e g \left (1365 f^2 g x+715 f^3+945 f g^2 x^2+231 g^3 x^3\right )+c^4 d^4 \left (24570 f^2 g^2 x^2+20020 f^3 g x+6435 f^4+13860 f g^3 x^3+3003 g^4 x^4\right )\right )}{45045 c^5 d^5 \sqrt{d+e x}} \]

Antiderivative was successfully verified.

[In]

Integrate[((f + g*x)^4*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(d + e*x)^(5/2),x]

[Out]

(2*(a*e + c*d*x)^3*Sqrt[(a*e + c*d*x)*(d + e*x)]*(128*a^4*e^4*g^4 - 64*a^3*c*d*e^3*g^3*(15*f + 7*g*x) + 48*a^2
*c^2*d^2*e^2*g^2*(65*f^2 + 70*f*g*x + 21*g^2*x^2) - 8*a*c^3*d^3*e*g*(715*f^3 + 1365*f^2*g*x + 945*f*g^2*x^2 +
231*g^3*x^3) + c^4*d^4*(6435*f^4 + 20020*f^3*g*x + 24570*f^2*g^2*x^2 + 13860*f*g^3*x^3 + 3003*g^4*x^4)))/(4504
5*c^5*d^5*Sqrt[d + e*x])

________________________________________________________________________________________

Maple [A]  time = 0.051, size = 283, normalized size = 0.8 \begin{align*}{\frac{ \left ( 2\,cdx+2\,ae \right ) \left ( 3003\,{g}^{4}{x}^{4}{c}^{4}{d}^{4}-1848\,a{c}^{3}{d}^{3}e{g}^{4}{x}^{3}+13860\,{c}^{4}{d}^{4}f{g}^{3}{x}^{3}+1008\,{a}^{2}{c}^{2}{d}^{2}{e}^{2}{g}^{4}{x}^{2}-7560\,a{c}^{3}{d}^{3}ef{g}^{3}{x}^{2}+24570\,{c}^{4}{d}^{4}{f}^{2}{g}^{2}{x}^{2}-448\,{a}^{3}cd{e}^{3}{g}^{4}x+3360\,{a}^{2}{c}^{2}{d}^{2}{e}^{2}f{g}^{3}x-10920\,a{c}^{3}{d}^{3}e{f}^{2}{g}^{2}x+20020\,{c}^{4}{d}^{4}{f}^{3}gx+128\,{a}^{4}{e}^{4}{g}^{4}-960\,{a}^{3}cd{e}^{3}f{g}^{3}+3120\,{a}^{2}{c}^{2}{d}^{2}{e}^{2}{f}^{2}{g}^{2}-5720\,a{c}^{3}{d}^{3}e{f}^{3}g+6435\,{f}^{4}{c}^{4}{d}^{4} \right ) }{45045\,{c}^{5}{d}^{5}} \left ( cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade \right ) ^{{\frac{5}{2}}} \left ( ex+d \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)^4*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x)

[Out]

2/45045*(c*d*x+a*e)*(3003*c^4*d^4*g^4*x^4-1848*a*c^3*d^3*e*g^4*x^3+13860*c^4*d^4*f*g^3*x^3+1008*a^2*c^2*d^2*e^
2*g^4*x^2-7560*a*c^3*d^3*e*f*g^3*x^2+24570*c^4*d^4*f^2*g^2*x^2-448*a^3*c*d*e^3*g^4*x+3360*a^2*c^2*d^2*e^2*f*g^
3*x-10920*a*c^3*d^3*e*f^2*g^2*x+20020*c^4*d^4*f^3*g*x+128*a^4*e^4*g^4-960*a^3*c*d*e^3*f*g^3+3120*a^2*c^2*d^2*e
^2*f^2*g^2-5720*a*c^3*d^3*e*f^3*g+6435*c^4*d^4*f^4)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(5/2)/c^5/d^5/(e*x+d)^(5
/2)

________________________________________________________________________________________

Maxima [A]  time = 1.25476, size = 672, normalized size = 2. \begin{align*} \frac{2 \,{\left (c^{3} d^{3} x^{3} + 3 \, a c^{2} d^{2} e x^{2} + 3 \, a^{2} c d e^{2} x + a^{3} e^{3}\right )} \sqrt{c d x + a e} f^{4}}{7 \, c d} + \frac{8 \,{\left (7 \, c^{4} d^{4} x^{4} + 19 \, a c^{3} d^{3} e x^{3} + 15 \, a^{2} c^{2} d^{2} e^{2} x^{2} + a^{3} c d e^{3} x - 2 \, a^{4} e^{4}\right )} \sqrt{c d x + a e} f^{3} g}{63 \, c^{2} d^{2}} + \frac{4 \,{\left (63 \, c^{5} d^{5} x^{5} + 161 \, a c^{4} d^{4} e x^{4} + 113 \, a^{2} c^{3} d^{3} e^{2} x^{3} + 3 \, a^{3} c^{2} d^{2} e^{3} x^{2} - 4 \, a^{4} c d e^{4} x + 8 \, a^{5} e^{5}\right )} \sqrt{c d x + a e} f^{2} g^{2}}{231 \, c^{3} d^{3}} + \frac{8 \,{\left (231 \, c^{6} d^{6} x^{6} + 567 \, a c^{5} d^{5} e x^{5} + 371 \, a^{2} c^{4} d^{4} e^{2} x^{4} + 5 \, a^{3} c^{3} d^{3} e^{3} x^{3} - 6 \, a^{4} c^{2} d^{2} e^{4} x^{2} + 8 \, a^{5} c d e^{5} x - 16 \, a^{6} e^{6}\right )} \sqrt{c d x + a e} f g^{3}}{3003 \, c^{4} d^{4}} + \frac{2 \,{\left (3003 \, c^{7} d^{7} x^{7} + 7161 \, a c^{6} d^{6} e x^{6} + 4473 \, a^{2} c^{5} d^{5} e^{2} x^{5} + 35 \, a^{3} c^{4} d^{4} e^{3} x^{4} - 40 \, a^{4} c^{3} d^{3} e^{4} x^{3} + 48 \, a^{5} c^{2} d^{2} e^{5} x^{2} - 64 \, a^{6} c d e^{6} x + 128 \, a^{7} e^{7}\right )} \sqrt{c d x + a e} g^{4}}{45045 \, c^{5} d^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^4*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="maxima")

[Out]

2/7*(c^3*d^3*x^3 + 3*a*c^2*d^2*e*x^2 + 3*a^2*c*d*e^2*x + a^3*e^3)*sqrt(c*d*x + a*e)*f^4/(c*d) + 8/63*(7*c^4*d^
4*x^4 + 19*a*c^3*d^3*e*x^3 + 15*a^2*c^2*d^2*e^2*x^2 + a^3*c*d*e^3*x - 2*a^4*e^4)*sqrt(c*d*x + a*e)*f^3*g/(c^2*
d^2) + 4/231*(63*c^5*d^5*x^5 + 161*a*c^4*d^4*e*x^4 + 113*a^2*c^3*d^3*e^2*x^3 + 3*a^3*c^2*d^2*e^3*x^2 - 4*a^4*c
*d*e^4*x + 8*a^5*e^5)*sqrt(c*d*x + a*e)*f^2*g^2/(c^3*d^3) + 8/3003*(231*c^6*d^6*x^6 + 567*a*c^5*d^5*e*x^5 + 37
1*a^2*c^4*d^4*e^2*x^4 + 5*a^3*c^3*d^3*e^3*x^3 - 6*a^4*c^2*d^2*e^4*x^2 + 8*a^5*c*d*e^5*x - 16*a^6*e^6)*sqrt(c*d
*x + a*e)*f*g^3/(c^4*d^4) + 2/45045*(3003*c^7*d^7*x^7 + 7161*a*c^6*d^6*e*x^6 + 4473*a^2*c^5*d^5*e^2*x^5 + 35*a
^3*c^4*d^4*e^3*x^4 - 40*a^4*c^3*d^3*e^4*x^3 + 48*a^5*c^2*d^2*e^5*x^2 - 64*a^6*c*d*e^6*x + 128*a^7*e^7)*sqrt(c*
d*x + a*e)*g^4/(c^5*d^5)

________________________________________________________________________________________

Fricas [A]  time = 1.6954, size = 1214, normalized size = 3.61 \begin{align*} \frac{2 \,{\left (3003 \, c^{7} d^{7} g^{4} x^{7} + 6435 \, a^{3} c^{4} d^{4} e^{3} f^{4} - 5720 \, a^{4} c^{3} d^{3} e^{4} f^{3} g + 3120 \, a^{5} c^{2} d^{2} e^{5} f^{2} g^{2} - 960 \, a^{6} c d e^{6} f g^{3} + 128 \, a^{7} e^{7} g^{4} + 231 \,{\left (60 \, c^{7} d^{7} f g^{3} + 31 \, a c^{6} d^{6} e g^{4}\right )} x^{6} + 63 \,{\left (390 \, c^{7} d^{7} f^{2} g^{2} + 540 \, a c^{6} d^{6} e f g^{3} + 71 \, a^{2} c^{5} d^{5} e^{2} g^{4}\right )} x^{5} + 35 \,{\left (572 \, c^{7} d^{7} f^{3} g + 1794 \, a c^{6} d^{6} e f^{2} g^{2} + 636 \, a^{2} c^{5} d^{5} e^{2} f g^{3} + a^{3} c^{4} d^{4} e^{3} g^{4}\right )} x^{4} + 5 \,{\left (1287 \, c^{7} d^{7} f^{4} + 10868 \, a c^{6} d^{6} e f^{3} g + 8814 \, a^{2} c^{5} d^{5} e^{2} f^{2} g^{2} + 60 \, a^{3} c^{4} d^{4} e^{3} f g^{3} - 8 \, a^{4} c^{3} d^{3} e^{4} g^{4}\right )} x^{3} + 3 \,{\left (6435 \, a c^{6} d^{6} e f^{4} + 14300 \, a^{2} c^{5} d^{5} e^{2} f^{3} g + 390 \, a^{3} c^{4} d^{4} e^{3} f^{2} g^{2} - 120 \, a^{4} c^{3} d^{3} e^{4} f g^{3} + 16 \, a^{5} c^{2} d^{2} e^{5} g^{4}\right )} x^{2} +{\left (19305 \, a^{2} c^{5} d^{5} e^{2} f^{4} + 2860 \, a^{3} c^{4} d^{4} e^{3} f^{3} g - 1560 \, a^{4} c^{3} d^{3} e^{4} f^{2} g^{2} + 480 \, a^{5} c^{2} d^{2} e^{5} f g^{3} - 64 \, a^{6} c d e^{6} g^{4}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{e x + d}}{45045 \,{\left (c^{5} d^{5} e x + c^{5} d^{6}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^4*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="fricas")

[Out]

2/45045*(3003*c^7*d^7*g^4*x^7 + 6435*a^3*c^4*d^4*e^3*f^4 - 5720*a^4*c^3*d^3*e^4*f^3*g + 3120*a^5*c^2*d^2*e^5*f
^2*g^2 - 960*a^6*c*d*e^6*f*g^3 + 128*a^7*e^7*g^4 + 231*(60*c^7*d^7*f*g^3 + 31*a*c^6*d^6*e*g^4)*x^6 + 63*(390*c
^7*d^7*f^2*g^2 + 540*a*c^6*d^6*e*f*g^3 + 71*a^2*c^5*d^5*e^2*g^4)*x^5 + 35*(572*c^7*d^7*f^3*g + 1794*a*c^6*d^6*
e*f^2*g^2 + 636*a^2*c^5*d^5*e^2*f*g^3 + a^3*c^4*d^4*e^3*g^4)*x^4 + 5*(1287*c^7*d^7*f^4 + 10868*a*c^6*d^6*e*f^3
*g + 8814*a^2*c^5*d^5*e^2*f^2*g^2 + 60*a^3*c^4*d^4*e^3*f*g^3 - 8*a^4*c^3*d^3*e^4*g^4)*x^3 + 3*(6435*a*c^6*d^6*
e*f^4 + 14300*a^2*c^5*d^5*e^2*f^3*g + 390*a^3*c^4*d^4*e^3*f^2*g^2 - 120*a^4*c^3*d^3*e^4*f*g^3 + 16*a^5*c^2*d^2
*e^5*g^4)*x^2 + (19305*a^2*c^5*d^5*e^2*f^4 + 2860*a^3*c^4*d^4*e^3*f^3*g - 1560*a^4*c^3*d^3*e^4*f^2*g^2 + 480*a
^5*c^2*d^2*e^5*f*g^3 - 64*a^6*c*d*e^6*g^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)/(c^5*d
^5*e*x + c^5*d^6)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)**4*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: AttributeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^4*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="giac")

[Out]

Exception raised: AttributeError